124 research outputs found

    WormBase 2017: Molting into a new stage

    Get PDF

    WormBase: A modern Model Organism Information Resource

    Get PDF
    WormBase (https://wormbase.org/) is a mature Model Organism Information Resource supporting researchers using the nematode Caenorhabditis elegans as a model system for studies across a broad range of basic biological processes. Toward this mission, WormBase efforts are arranged in three primary facets: curation, user interface and architecture. In this update, we describe progress in each of these three areas. In particular, we discuss the status of literature curation and recently added data, detail new features of the web interface and options for users wishing to conduct data mining workflows, and discuss our efforts to build a robust and scalable architecture by leveraging commercial cloud offerings. We conclude with a description of WormBase\u27s role as a founding member of the nascent Alliance of Genome Resources

    Caenorhabditis nomenclature

    Get PDF
    Genetic nomenclature allows the genetic features of an organism to be structured and described in a uniform and systematicway. Genetic features, including genes, variations (both natural and induced), and gene products, are assigned descriptorsthat inform on the nature of the feature. These nomenclature designations facilitate communication among researchers (in publications,presentations, and databases) to advance understanding of the biology of the genetic feature and the experimental utilizationof organisms that contain the genetic feature. The nomenclature system that is used for C. elegans was first employed by Sydney Brenner (1974) in his landmark description of the genetics of this model organism, and then substantially extended and modified in Horvitz et al., 1979. The gene, allele, and chromosome rearrangement nomenclature, described below, is an amalgamation of that from bacteria andyeast, with the rearrangement types from Drosophila. The nomenclature avoids standard words, subscripts, superscripts, and Greek letters and includes a hyphen (-) to separatethe gene name from gene number (distinct genes with similar phenotypes or molecular properties). As described by Jonathan Hodgkin, ‘the hyphen is about 1 mm in length in printed text and therefore symbolizes the 1 mm long worm’. These nomenclature propertiesmake C. elegans publications highly suitable for informatic text mining, as there is minimal ambiguity. From the founding of the CaenorhabditisGenetics Center (CGC) in 1979 until 1992, Don Riddle and Mark Edgley acted as the central repository for genetic nomenclature. Jonathan Hodgkin was nomenclature czar from 1992 through 2013; this was a pivotal period with the elucidation of the genome sequence of C. elegans, and later that of related nematodes, and the inception of WormBase. Thus, under the guidance of Hodgkin, the nomenclature system became a central feature of WormBase and the number and types of genetic features significantly expanded. The nomenclature system remains dynamic, with recentadditions including guidelines related to genome engineering, and continued reliance on the community for input. WormBase assigns specific identifying codes to each laboratory engaged in dedicated long-term genetic research on C. elegans. Each laboratory is assigned a laboratory/strain code for naming strains, and an allele code for naming genetic variation(e.g., mutations) and transgenes. These designations are assigned to the laboratory head/PI who is charged with supervisingtheir organization in laboratory databases and their associated biological reagents that are described on WormBase, in publications, and distributed to the scientific community on request. The laboratory/strain code is used: a) to identifythe originator of community-supplied information on WormBase, which, in addition to attribution, facilitates communicationbetween the community/curators and the originator if an issue related to the information should arise at a later date; andb) to provide a tracking code for activities at the CGC. The laboratory/strain designation consists of 2-3 uppercase letters while the allele designation has 1-3 lowercase letters.The final letter of a laboratory code should not be an “O” or an “I” so as not to be mistaken for the numbers “0” or “1” respectively.Additionally, allele designations should also not end with the letter “l” which could also be mistaken for the number “1.” These codes are listed at the CGC and in WormBase. Investigators generating strains, alleles, transgenes, and/or defining genes require these designations and should applyfor them at [email protected]. Information for several other nematode species, in addition to C. elegans, is curated at WormBase. All species are referred to by their Linnean binomial names (e.g,. Caenorhabditis elegans or C. elegans). Details of all the genomes available at WormBase and the degree of their curation can be found at www.wormbase.org/species/al

    WormBase 2016: Expanding to enable helminth genomic research

    Get PDF

    RNA-binding proteins

    Get PDF
    The C. elegans genome encodes many RNA-binding proteins (RBPs) with diverse functions in development, indicative of extensive layers of post-transcriptional control of RNA metabolism. A number of C. elegans RBPs have been identified by forward or reverse genetics. They tend to display tissue-specific mutant phenotypes, which underscore their functional importance. In addition, several RBPs that bind regulatory sequences in the 3'untranslated regions of mRNAs have been identified molecularly. Most C. elegans RBPs are conserved throughout evolution, suggesting that their study in C. elegans may uncover new conserved biological functions. In this review, we primarily discuss RBPs that are associated with well-characterized mutant phenotypes in the germ line, the early embryo, or in somatic tissues. We also discuss the identification of RNA targets of RBPs, which is an important first step to understand how an RBP controls C. elegans development. It is likely that most RBPs regulate multiple RNA targets. Once multiple RNA targets are identified, specific features that distinguish target from non-target RNAs and the type(s) of RNA metabolism that each RBP controls can be determined. Furthermore, one can determine whether the RBP regulates all targets by the same mechanism or different targets by distinct mechanisms. Such studies will provide insights into how RBPs exert coordinate control of their RNA targets, thereby affecting development in a concerted fashion

    RNA in situ hybridization of dissected gonads

    Get PDF

    WormBase in 2022-data, processes, and tools for analyzing Caenorhabditis elegans

    Get PDF
    WormBase (www.wormbase.org) is the central repository for the genetics and genomics of the nematode Caenorhabditis elegans. We provide the research community with data and tools to facilitate the use of C. elegans and related nematodes as model organisms for studying human health, development, and many aspects of fundamental biology. Throughout our 22-year history, we have continued to evolve to reflect progress and innovation in the science and technologies involved in the study of C. elegans. We strive to incorporate new data types and richer data sets, and to provide integrated displays and services that avail the knowledge generated by the published nematode genetics literature. Here, we provide a broad overview of the current state of WormBase in terms of data type, curation workflows, analysis, and tools, including exciting new advances for analysis of single-cell data, text mining and visualization, and the new community collaboration forum. Concurrently, we continue the integration and harmonization of infrastructure, processes, and tools with the Alliance of Genome Resources, of which WormBase is a founding member

    Combining audio-based similarity with web-based data to accelerate automatic music playlist generation

    Full text link
    We present a technique for combining audio signal-based music similarity with web-based musical artist similarity to accelerate the task of automatic playlist generation. We demonstrate the applicability of our proposed method by extending a recently published interface for music players that benefits from intelligent structuring of audio collections. While the original approach involves the calculation of similarities between every pair of songs in a collection, we incorporate web-based data to reduce the number of necessary similarity calculations. More precisely, we exploit artist similarity determined automatically by means of web retrieval to avoid similarity calculation between tracks of dissimilar and/or unrelated artists. We evaluate our acceleration technique on two audio collections with different characteristics. It turns out that the proposed combination of audio- and text-based similarity not only reduces the number of necessary calculations considerably but also yields better results, in terms of musical quality, than the initial approach based on audio data only. Additionally, we conducted a small user study that further confirms the quality of the resulting playlists

    WormBase 2014: New views of curated biology

    Get PDF

    Reevaluation of the role of LIP-1 as an ERK/MPK-1 dual specificity phosphatase in the C. elegans germline

    Get PDF
    The fidelity of a signaling pathway depends on its tight regulation in space and time. Extracellular signal-regulated kinase (ERK) controls wide-ranging cellular processes to promote organismal development and tissue homeostasis. ERK activation depends on a reversible dual phosphorylation on the TEY motif in its active site by ERK kinase (MEK) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 homolog, was proposed to function as an ERK (MPK-1) DUSP in th
    corecore